

EZMeta[™] Serum Zinc Colorimetric Assay Kit

Cat #: D-AKC2140

Size: 48T / 96T

Storage: Stored at 4°C for 6 months, protected from light

Product Information

Applicable samples: Serum

Assay Principle

Zinc is one of the essential trace elements and also plays an important role in the metabolism of insulin and porphyrin. EZMeta[™] Serum Zinc Colorimetric Assay Kit provides a simple method for detecting serum sodium concentration in serum sample. In the pH 8.5-9.5 solution, Zn²⁺ and the zinc reagent form a blue coordination compound with a maximum absorption peak at 620 nm.

Materials Supplied and Storage Conditions

Kit components	Size		Ctowers couditions	
	48 T	96 T	Storage conditions	
Reagent I	10 mL	20 mL	4°C	
Reagent II	5 mL	10 mL	4°C	
Reagent III	1	1	4°C, protected from light	
Standard	1 mL	2 mL	4°C	

Materials Required but Not Supplied

·Microplate reader or visible spectrophotometer capable of measuring absorbance at 620 nm

·96-well plate or Microglass cuvette, precision pipettes, disposable pipette tips

Centrifuge

·Deionized water, anhydrous ethanol

Reagent Preparation

Reagent I : Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Reagent II : Ready to use as supplied. Equilibrate to room temperature before use. Store at 4°C.

Working ReagentIII: Prepare reagent one day before use, add 5 mL anhydrous ethanol for 48 T and 10 mL anhydrous ethanol for 96 T to fully dissolve. Cover tightly and let stand overnight. The prepared reagent can be stored at 4°C, protected from light for about 1 month. If the color turns yellow, it has expired.

Note: The ReagentⅢ should be dissolved in shock for at least 30 min. If a small amount of particles are still insoluble, the test will not be affected.

Setting of Standard curves: Dilute the 1 mmol/L Standard to $1000, 500, 200, 100, 50, 20, 10 \mu mol/L$ standard solution with deionized water, as shown in the following table.

Num.	Volume of 1 mmol/L	Volume of Deionized Water	Standard Concentration	
	Standard (µL)	(μL)	(μmol/L)	
Std.1	200	0	1000	
Std.2	100	100	500	
Std.3	40	160	200	
Std.4	20	180	100	
Std.5	10	190	50	
Std.6	4	196	20	
Std.7	2	198	10	

Sample Preparation

Serum: Tested directly.

Assay Procedure

1. Preheat the microplate reader or visible spectrophotometer for more than 30 min, and adjust the wavelength to 620 nm, visible spectrophotometer was returned to zero with deionized water.

Reagent	Blank Tube (µL)	Standard Tube (µL)	Test Tube (μL)
Serum	0	0	100
Standard	0	100	0
Deionized Water	100	0	0
Reagent I	200	200	200

2. Sample measurement (the following operations are operated in the EP tube).

Mix well and centrifuge at 10,000 rpm for 10 min at room temperature.

Supernatant	100	100	100
Reagent II	100	100	100
Working ReagentⅢ	100	100	100

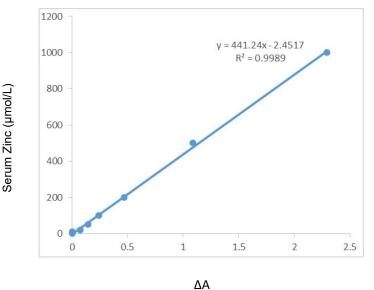
3. Mix well and kept at room temperature for 10 min. Add 200 μ L into a 96-well plate or microglass cuvette and the absorbance value is measured at 620 nm. The blank well is recorded as A_{Blank}, the standard well is recorded as A_{Standard}, and the test well is recorded as A_{Test}. Finally calculate $\Delta A_{Test}=A_{Test}-A_{Blank}$, $\Delta A_{Standard}=A_{Standard}-A_{Blank}$.

Note: Blank well only needs to measure 1 time. In order to guarantee the accuracy of experimental results, need to do a pre-experiment with 2-3 samples. If the ΔA_{Test} value is greater than 1.5, it is recommended to dilute the sample with deionized water for measurement. After adding Working ReagentIII and mix well, complete the measurement of the tube within 30 min.

Data Analysis

1. Drawing of standard curve

With the concentration of the standard solution as the y-axis and the $\Delta A_{Standard}$ as the x-axis, draw the standard curve.


2. Calculation of the concentration of serum zinc

Bring the ΔA_{Test} of the sample into the equation to get the y value (µmol/L).

Note: If the sample is further diluted, it needs to be multiplied by the further dilution factor n.

Typical Data

Typical standard curve:

7

Figure 1. Standard curve for Serum Zinc.

Disclaimer

The reagent is only used in the field of scientific research, not suitable for clinical diagnosis or other purposes.

